
ADAPTIVE ALGORITHM SELECTION, WITH APPLICATIONS IN PEDESTRIAN
DETECTION

Shu Zhang ∗

SONY Electronics Inc.
San Jose, CA, 95112, USA

Qi Zhu, Amit Roy-Chowdhury

University of California, Riverside
Riverside, CA, 92521, USA

ABSTRACT

Computer vision algorithms are known to be extremely sensi-
tive to the environmental conditions in which the data is cap-
tured, e.g., lighting conditions and target density. Tuning of
parameters or choosing a completely new algorithm is often
needed to achieve a certain performance level. In this paper,
we focus on this problem and propose a framework to auto-
matically choose the “best” algorithm-parameter combination
(often referred to as the best algorithm for simplicity in this
paper) for a certain input data. This necessitates developing a
mechanism to switch among different algorithms and parame-
ters as the nature of the input video changes. Specifically, our
proposed algorithm calculates a similarity function between a
test video segment and a training video segment. Similarity
between training and test dataset indicates the same algorithm
can be applied to both of them. We design a cost function
with this similarity measure and a constraint on the number
of switches. In the experiments, we apply our algorithm to
the problem of pedestrian detection. We show how to adap-
tively select among 7 algorithm-parameter combinations and
provide promising results on 3 publicly available datasets.

Index Terms— Algorithm selection, adaptation, pedes-
trian detection

1. INTRODUCTION

Numerous algorithms have been developed for various com-
puter vision applications. Also, many public datasets have
been released to help researchers evaluate their algorithms.
For instance, the datasets of CAVIAR [1] and TUD-Brussels
[2] have been commonly used in the area of tracking. In many
cases, an algorithm is able to achieve good performance on
some datasets, while failing to beat other algorithms on other
datasets. Besides, it is interesting to see that some algorithms
perform well on parts of a dataset, but cannot achieve good
results on some other parts. This is because algorithms are
sensitive to the environmental conditions in each dataset or
parts thereof. These observations raise an important question:

∗Shu Zhang performed the work while at University of California, River-
side.

can we automatically select the best algorithm to be used for
a certain application domain?

The goal of this paper is the following. Given a set of
existing computer vision algorithms and their parameters for
a certain problem, can we automatically select the “best”
algorithm-parameter combination (referred to as algorithm
in the rest of the paper) for that problem domain? The an-
swer, in most cases, will not lie in one specific algorithm
but on an adaptive mechanism for selecting among the set
of algorithms, since the conditions in the video will likely
change over time. Conditions that could trigger the switch
include the lighting in the video, the number of targets in the
scene, the resolution of the targets, and so on - factors that
are known to affect the performance of vision algorithms. In
the experiments, we focus on the problem of pedestrian de-
tection, since it is a fundamental low-level task that is crucial
for higher-level ones such as recognition, and known to be
sensitive to environmental factors. However, the proposed
algorithm is a general solution that could be applicable to
many other computer vision problems.

As illustrated in Fig. 1, the results of three pedestrian de-
tectors are affected by the frequently-changing scales of ob-
jects, number of objects, and illumination condition. Each
row shows representative image frames from a video recorded
at different times of a day, and each column denotes the per-
son detection results. Each pedestrian detector achieves de-
sired results on some image frames. For instance, in the first
frame, the desired detectors are 2 and 3, while in the second
frame, the desired detectors change to 1 and 2. However, in
the fourth frame, the illumination changes and the number
of persons increases, and detector 3 achieves the best perfor-
mance. Similar observations can be made in the rest of the
frames. An example of an ideal detector is shown with green
arrows. This example shows the importance of developing an
adaptive switching mechanism among multiple detectors to
minimize the detection error for each scenario.

1.1. Overview and Contributions

Motivated by Fig. 1, we propose a switching algorithm which
adaptively selects the best available algorithm for each sce-
nario. Our input consists of a set of existing algorithms. We



Fig. 1: Illustrations of pedestrian detection results by three algorithms, {A1, A2, A3}, in a video sequence within a day. Each
row denotes results of an algorithm,and each column represents an image frame. An example of the adaptive detector selection
is shown with green arrows, which is A2 → A2 → A1 → A3 → A2 → A2 → A2 → A3.

also have datasets on which these algorithms have been tested.
Each available algorithm has image frames as inputs and per-
formance results as outputs.

There are two operating phases in our proposed frame-
work: training and test. In the training phase, every algo-
rithm is applied to a unique scenario in the training dataset.
The algorithms that provide the smallest detection error are
then labeled as the best algorithms for this training scenario.
In the test phase, we segment every video sequence in the
test dataset into time windows. The goal of the proposed al-
gorithm selection process is to choose the “best” algorithm
for each video segment. The training segment that the test
video is closest to determines the vision algorithm to be used
(and hence the switching instant), subject to an additional
constraint that the number of algorithm switches should be
limited. We show how this can be framed as an optimiza-
tion problem and how the global optimum is computed. We
demonstrate the efficacy of the proposed approach on mul-
tiple pedestrian detection datasets. We apply 7 algorithm-
parameter combinations on 3 public datasets [3, 4, 5]. It is
proved that the proposed approach performs better than any
single algorithm.

1.2. Related Work

Algorithm selection has been studied in recent years in a few
works. In [6], image segmentation algorithms are selected
on different images. Features are learned by SVM and the
performance of each algorithm is mapped to a ranking vector
based on the feature correlations. In [7], the goal is to segment
pixels in an image into different regions that are suitable to
different algorithms, where a random forest classifier is used.

Our work is different from these two approaches. We con-
sider the problem of automatically switching the algorithm
based on the scene similarity between a test time window and
all the time windows in the training dataset. Our proposed
algorithm does not learn which specific feature to be used for
a dataset, and does not need manual analysis of the feature-
performance correspondence. This is more general than [7],
where the effects of the features on the training dataset are
manually analyzed to obtain the correlations between features

and algorithms, e.g. which feature has an impact on a spe-
cific data. The methodology of domain adaptation that we use
finds the underlying correspondences among features. More-
over, we propose a global optimization methodology that au-
tomatically switches to the best algorithm but with a penalty
on the number of switches. In [8], budget constraints are
taken into account as the leverage rule between different algo-
rithms in the context of handwriting recognition. The budget
constraint can be added as an additional one in our proposed
framework.

2. METHODOLOGY

2.1. Problem Description

We assume the availability of a number of algorithms for the
problem, and the performance of every algorithm on some
datasets is known. Our goal is to answer the following ques-
tions: 1) for every part of an unknown dataset, is it possible
to automatically select an algorithm among all available al-
gorithms that achieves the best result? 2) for the entire un-
known dataset, what is the best strategy to switch between
algorithms?

In our problem, the input is the set of K available al-
gorithms A = {A1, · · · , AK} and the dataset on which
they are evaluated. We call this the training dataset T =
{T1, · · · , TM}, where Ti is the i-th unique scenario in T .
We apply every algorithm Ak on each Ti and select the al-
gorithm(s) that perform the best. The algorithm selection for
Ti is denoted with a label Yi. The unknown dataset is called
the test dataset R. In R, we assume that there are N time
windows in total. Every time window of images is denoted
as Rj , j = 1, · · · , N . The selection of algorithms for Rj is
represented by Lj . Given the pairs (Ti, Yi), the problem is
how to find the unknown label Lj for each Rj that is inR.

2.2. Solution Overview

The overview of our solution is shown in Fig. 2. In the
training dataset T , we obtain the label for each time win-
dow, which indicates the algorithm selection on Ti. In the



Fig. 2: Overall Methodology.

test dataset R, the output of the algorithm, the label set L =
{L1, · · · , LN}, is obtained by a cost function that is able to
automatically select the best algorithm on a specific time win-
dow Rj . In this cost function, there are three terms that need
to be obtained. The first term is the similarity score S(Ti, Rj).
The second term is the labeling function that is defined in Sec.
2.5. The third term is a regularization term that aims to reduce
the total number of algorithm switches. This regularization
term depends on two consecutive time windows.

2.3. Training Label Calculation

In the training dataset T , we exhaustively apply every algo-
rithm Ak on each time window Ti. The algorithm selection
for Ti is denoted as the label Yi = Y(Ti), where Y is a map-
ping function that satisfies Y(Ti)→ 2A. The implementation
of Y is provided in the experimental section. It is noted that
Yi can be either a single value or a vector because it is likely
that multiple algorithms achieve the same performance for Ti.
For instance, in the example in Fig. 1, the first and second al-
gorithms obtain the same performance on the second frame.

2.4. Similarity Score Calculation

In the test dataset R, every video sequence/image set is seg-
mented into a sequence of non-overlapping time windowsRj .
Our goal is to find an algorithm Lj for each Rj .

The criteria of algorithm selection Lj depends on the sim-
ilarity between Rj and the scenarios in T . Ideally, we want
to compareRj with every training scenario, and find the most
similar training scenario to Rj . This training scenario shares
similar characteristics with Rj , and thus the best algorithm(s)
for it (identified during the training stage) should also provide
the best performance for Rj . In practice, for overhead and
stability consideration, we may not always choose the most
similar training scenario, as explained later.

The similarity between Rj and Ti, denoted by S(Ti, Rj),
is calculated as

S(Ti, Rj) = e−d(Ti,Rj) (1)

where d(Ti, Rj) represents the feature distance between Ti
and Rj . It can be computed by the method in [9], where the
key idea is to use the domain adaptation to project both the
training data and each video segment of the test data into sub-
spaces to learn domain-invariant features.

2.5. Adaptive Algorithm Selection

The ultimate goal of our proposed approach is to automati-
cally select an algorithm Lj for a time window of images Rj

in the test data. We formulate the selection of algorithms in
the training datasetR as

{L1, · · · , LN} = max
k
{
∑
i

I(Ak, Ti)S(Ti, Rj)+αh(j, j−1)},

(2)
where α is an coefficient, and I is a labeling function that is
defined as

I(Ak, Ti) =

{
1, if Ak ∈ Yi,
0, otherwise.

(3)

S(Ti, Rj) denotes the similarity between Ti and Rj . We
use a matrix X to represent the output of I(Ak, Ti)S(Ti, Rj)
for every j and k, where X ∈ RK×N . We define kj as the
selected row for the column j of X , and define f(kj) as the
label for the kj-th row. In other words, Lj ∈ f(kj).

The second term h(j, j−1) is a regularization term, which
indicates the label similarity between two consecutive time
windows Rj−1 and Rj . We define h(j, j − 1) as

h(j, j − 1) =
len(f(kj) ∩ f(kj−1))

len(f(kj−1))
(4)

where f(kj) ∩ f(kj−1) denotes the intersection between two
vectors f(kj) and f(kj−1), and len represents the length of a
vector. h(j, j−1) represents that if the selected rows of j−1
and j-th columns share similar algorithms, the regularization
term h(j, j − 1) is high, leading to high overall cost.

2.6. Overall Optimization

Eq. 2 can be rewritten as

{L1, · · · , LN} = max
k
{Xk,j + αh(j, j − 1)} (5)

We solve this equation by using the dynamic program-
ming methodology [10], where the global optimal solution is
guaranteed to be obtained.

3. EXPERIMENTS

3.1. Experimental Setup

We demonstrate the effectiveness of our approach through a
set of experiments. There are 7 state-of-the-art available algo-
rithms: Cascades [11], HOG [3], ACF [12], PartBased [13],
KSVM [14], MultiFtr [15], and HOG-LBP [16]. The public
datasets that are used in this paper are: INRIA [3], ETHMS
[4], and TUD-Brussels [5]. We also compare our results with
the algorithm selection methodology in [7], named as Ran-
For. We extract four different features that are used for dis-
tance calculation in the experiments: HOG features [3], SIFT



10−1 100 Ave
HOG 0.498 0.231 0.333
MultiFtr 0.283 0.109 0.161
KSVM 0.445 0.221 0.302
HOG-LBP 0.426 0.190 0.272
Cascades 0.244 - 0.182
PartBased 0.538 0.199 0.302
ACF 0.173 0.078 0.103
RanFor 0.379 0.197 0.257
Proposed 0.238 0.115 0.152

(a) INRIA-Test

10−1 100 Ave
HOG 0.679 0.386 0.517
MultiFtr 0.651 0.378 0.499
KSVM 0.771 0.456 0.598
HOG-LBP 0.569 0.336 0.437
Cascades 0.653 0.513 0.569
PartBased 0.710 0.540 0.609
ACF 0.665 0.504 0.569
RanFor 0.674 0.483 0.565
Proposed 0.633 0.364 0.483

(b) ETHMS

10−1 100 Ave
HOG 0.829 0.563 0.675
MultiFtr 0.748 0.555 0.636
KSVM 0.877 0.583 0.714
HOG-LBP 0.867 0.616 0.714
Cascades 0.892 0.756 0.810
PartBased 0.911 0.814 0.851
ACF 0.865 0.763 0.804
RanFor 0.879 0.724 0.789
Proposed 0.744 0.553 0.635

(c) TUD-Brussels

Table 1: The miss rate at FPPI = 10−1, 100 and the average miss rates between 10−1 and 100. The best results and the second
best results are highlighted.

features [17], gradient features [18], and texture features [19].
We group all the training data into 20 unique scenarios for the
training dataset T . The results are plotted by false-positives-
per-image (FPPI) vs. miss rate.

We also investigate the effect of algorithm switches in ev-
ery dataset. In the training phase, we estimate the classifica-
tion threshold of each algorithm that leads to FPPI = 1. In
the test dataset, we keep the detections with the scores greater
than this threshold for each algorithm. We evaluate the detec-
tions for each time window, where the number of miss detec-
tions is used as the evaluation metrics. We set the parameter α
in Eq. 2 to 0.3. We have conducted a set of experiments and
have observed that for α < 1 the results are similar (when
α > 1, the performance of the proposed algorithm decreases
significantly as it is unlikely to switch between algorithms
even when it may provide significant improvement).

3.2. Performance Evaluation

In this section, we apply the proposed adaptive selection
strategy to public datasets. In Fig. 3, we show the average
FPPI vs. miss rate curves of the three datasets (INRIA-Test,
ETHMS, and TUD-Brussels), where the red curves repre-
sent the results of the proposed method. It is shown that the
average performance of the proposed approach across all
datasets is the best. This result proves the effectiveness of
developing an adaptive algorithm selection scheme.

In Table. 1, we report the miss rates of each algorithm
at FPPI = 10−1 and 100. We also show the average miss
rates between FPPI = 10−1 and FPPI = 100. In INRIA-Test
dataset, the proposed method has low miss rates at both FPPI
= 10−1 and FPPI = 100. In ETHMS dataset, HOG-LBP per-
forms the best, but our proposed algorithm selection strat-
egy obtains similar results. In TUD-Brussels, our proposed
approach performs very similar to MultiFtr. Both ETHMS
and TUD-Brussels datasets have low feature variances within
them. The performance of our proposed switching method
is similar to the best existing algorithm. This shows that the
proposed method can automatically choose one particular al-
gorithm that would perform the best.

10
−2

10
−1

10
0

10
1

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s 
ra

te

 

 
HOG
MultiFtr
KSVM
HOG−LBP
Cascades
PartBased
ACF
RanFor
Proposed

Fig. 3: The average performance of each algorithm on all the
datasets. The red curve in each sub-figure represents the per-
formance of the proposed approach.

4. CONCLUSION

In this paper, we present a novel approach to adaptively se-
lect the “best” algorithm among existing algorithms for each
segment of a video sequence. We calculate the feature simi-
larity on the manifold that is shared between training and test
data. The more similar they are, the higher the possibility that
the same algorithm can perform well on both of them. We
propose a cost function with an additional constraint on the
number of algorithm switches, where the global optimal solu-
tion is guaranteed to be obtained. We show the efficacy of the
proposed method on the application of pedestrian detection,
where 7 algorithm-parameter combinations are considered.
Our promising results have shown that adaptively selecting
algorithms can outperform a fixed algorithm selection. In the
future, we would like to work on an end-to-end algorithm se-
lection algorithm, e.g. deep neural network, which does not
need hand-crafted features that are used in the current method.

Acknowledgment
This work was partially supported under NSF grant CPS-
1544969.



5. REFERENCES

[1] “CAVIAR dataset,” http://homepages.inf.
ed.ac.uk/rbf/CAVIARDATA1/.

[2] M. Andriluka, S. Roth, and B. Schiele, “People-
tracking-by-detection and people-detection-by-
tracking,” in CVPR, 2008.

[3] N. Dalal and B. Triggs, “Histograms of oriented gradi-
ents for human detection,” in CVPR, 2005.

[4] A. Ess, B. Leibe, K. Schindler, and L. V. Gool, “A mo-
bile vision system for robust multi-person tracking,” in
CVPR, 2008.

[5] C. Wojek, S. Walk, and B. Schiele, “Multi-cue onboard
pedestrian detection,” in CVPR, 2009.

[6] X. Yong, D. Feng, Z. Rongchun, and M. Petrou,
“Learning-based algorithm selection for image segmen-
tation,” Pattern Recognition Letters, vol. 26, no. 8, pp.
1059–1068, 2005.

[7] O. M. Aodha, G. J. Brostow, and M. Pollefeys, “Seg-
menting video into classes of algorithm-suitability,” in
CVPR, 2010.

[8] J. Wang, T. Bolukbasi, K. Trapeznikov, and
V. Saligrama, “Model selection by linear pro-
gramming,” in ECCV, 2014.

[9] B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic
flow kernel for unsupervised domain adaptation,” in
CVPR, 2012.

[10] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiser-
son, Introduction to algorithms, McGraw-Hill Higher
Education, 2 edition, 2001.

[11] H. Cevikalp and B. Triggs, “Efficient object detection
using cascades of nearest convex model classifiers,” in
CVPR, 2012.

[12] P. Dollár, S. Belongie R. Appel, and P. Perona, “Fast
feature pyramids for object detection,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 36, no.
8, pp. 1532–1545, 2014.

[13] P. F. Felzenszwalb, R.B. Girshick, D. McAllester, and
D. Ramanan, “Object detection with discriminatively
trained part-based models,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 32, no. 9, pp.
1627–1645, 2010.

[14] S. Maji, A. Berg, and J. Malik, “Classification using
intersection kernel svms is efficient,” in CVPR, 2008.

[15] S. Walk, N. Majer, K. Schindler, and B. Schiele, “New
features and insights for pedestrian detection,” in CVPR,
2010.

[16] X. Wang and T. X. Han, “An hog-lbp human detector
with partial occlusion handling,” in ICCV, 2009.

[17] D. Lowe, “Object recognition from local scale-invariant
features,” in ICCV, 1999.

[18] A. Oliva and A. Torralba, “Modeling the shape of the
scene: a holistic representation of the spatial envelope,”
International Journal on Computer Vision, vol. 42, no.
3, pp. 145–175, 2001.

[19] “GLCM,” http://www.fp.ucalgary.ca/
mhallbey/tutorial.htm.


