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Abstract—Linear and multilinear models (PCA, 3DMM, AAM/ASM, and

multilinear tensors) of object shape/appearance have been very popular in

computer vision. In this paper, we analyze the applicability of these heuristic

models from the fundamental physical laws of object motion and image formation.

We prove that under suitable conditions, the image appearance space can be

closely approximated to be multilinear, with the illumination and texture subspaces

being trilinearly combined with the direct sum of the motion and deformation

subspaces. This result provides a physics-based understanding of many of the

successes and limitations of the linear and multilinear approaches existing in the

computer vision literature, and also identifies some of the conditions under which

they are valid. It provides an analytical representation of the image space in terms

of different physical factors that affect the image formation process. Numerical

analysis of the accuracy of the physics-based models is performed, and tracking

results on real data are presented.

Index Terms—Image appearance models, theoretical analysis, multilinear,

deformation, face tracking.
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1 INTRODUCTION

MODELING the appearance of an image is a fundamental problem
in computer vision. A large number of factors affect the image
formation process, including object shape, albedo, pose, illumina-
tion, and camera models. A number of models, like active
appearance/shape models (AAM/ASM) [17], [5], 3D morphable
models (3DMM) [3], multilinear models (MLM) [26], [29], or
nonlinear manifolds [15], have been used to construct and
parameterize the image appearance manifold in terms of these
factors. To resolve questions about the effectiveness and accuracy
of these methods, experimental evaluations have been carried out
on larger and larger data sets. While these experiments are a very
valuable contribution, it is also important to analyze the accuracy
of these models from the fundamental physical laws of image
formation. In this paper, we prove that under suitable conditions,
the image space of a moving and deforming object under varying
illumination can be closely approximated to be locally multilinear
with the illumination subspace and the texture subspace being
trilinearly combined with the direct sum of the motion and
deformation subspaces. This result provides an analytical repre-
sentation of the image space in terms of different physical factors
that affect the image formation process. Under special circum-
stances, the image space can be simpler. We show applications on
tracking faces in video using this physics-based model.

1.1 Related Work

Until a few years ago, the factors that affect the image formation
process (e.g., motion, illumination, and object deformation) were
usually studied separately. One of the classical methods for 2D

motion estimation on the image plane is optical flow [11], which
assumes that the intensity of a particular point does not change over
time. Estimation of 3D motion and structure, usually referred to as
the Structure from Motion (SfM) problem [4], [27], is another
classical research area in computer vision. While largely constrained
to the analysis of rigid objects, it has been extended to nonrigid
objects under orthographic projection [28]. However, most SfM
algorithms do not take illumination variation into consideration.
The authors in [35] proposed modeling the change of illumination in
optical flow and combining it with structure from motion,
photometric stereo, and multiview stereo in an optimization
framework.

In the study of illumination, Shape from Shading (SfS) [9], [10],
[19] is one of the earliest and most widely known methods. It is
based on the Lambertian reflectance law, and relies on the
illumination information in an image to estimate the 3D structure
in a scene. Shashua [23] and Moses [18] showed that ignoring the
effect of shadows, the set of images under varying illumination lies
in a 3D linear subspace (photometric stereo). Belhumeur and
Kriegman [2] showed that the set of images of an object under
arbitrary illumination forms a convex cone in the space of all
possible images. In [1] and [20], the authors independently derived
an analytical 9D spherical harmonics-based linear representation of
the images produced by a Lambertian object with attached
shadows. For the specular objects, higher orders of the spherical
harmonics functions with nonnegativity constraints were used [24].

Partial differential equations have been used for representing
shape deformations [12] with a lot of success in tracking problem.
Another common approach for modeling a deforming object is to
use a linear combination of bases. 3D Morphable Models (3DMM)
[3] decompose the 3D shape and texture of a face along the
principle component directions, and is well-known in applications
of face image synthesis and face recognition. Active Appearance
Model (AAM) [5], [17] is applied to 2D shape and texture. Shape
analysis has also been used to study deforming shapes, for
example, in human activities [30]; however, it focuses on 2D
shapes, and thus is not well designed for modeling pose and
illumination variations. Linear dynamical systems have been
proposed to model the texture variation in certain stationary
stochastic processes, termed dynamic textures [7]. A multilinear
extension of it using the higher order SVD has also been proposed
for modeling texture variation with multiple factors [6] and further
extended in [8].

To combine the effects of these various factors, linear, multi-
linear, and nonlinear models of object shape/appearance have
been popularly used for modeling the image appearance. Principal
Components Analysis (PCA) is one of the early attempts at
modeling the image appearance variation due to the change of
identity in face images, and later applied to model the variations
due to the changes of illumination. AAM/ASM [5], [17] tried to
model the appearance variation due to the changes of shape and
texture. 3DMM [3] is similar to AAM in that it uses linear models
for approximating the 3D shape and texture. However, the image
appearance manifold is a highly nonlinear function of the
parameters and becomes computationally expensive. MLM as-
sumes the image space to be multilinear in the identity, pose, and
illumination, and multilinear SVD can be applied to learn the bases
[29]. Locally, linear models have been another approach for
representing the image appearance space [16], [21], [25]. Nonlinear
manifolds [15] have also been proposed for modeling the facial
expression variations.

None of the above methods provides an analytical analysis of
the validity of these models. A more recent result showed
analytically that rigid motion and lighting were related bilinearly
[31] in the image appearance space. However, this work assumes
the object to be rigid and does not consider variations of texture.
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Thus, it cannot be used to model deformation, e.g., facial

expression and identity variations. The result in [32] assumed that

texture change is smooth in time and led to a result where the

texture subspace is linearly combined with the rigid motion and

deformation subspaces. It is a special case of this paper.

1.2 Overview and Contributions of the Paper

In this paper, we consider a general image formation process—an

imaged object undergoing a rigid motion (i.e., pose change) while

deforming and the illumination changing randomly. The theore-

tical derivation is based on a few weak assumptions that are

usually applicable—a finite dimensional vector space representa-

tion of illumination, small motion between two consecutive

frames, and a smooth differentiable 3D surface (shape and texture)

of the object. The following are the main contributions of the paper:

. Starting from fundamental physics-based models govern-
ing rigid object motion, deformations, the interaction of
light with the object and perspective projection, we derive
a description of the mathematical space in which an image
lies. Specifically, we prove that the image space can be
closely approximated to be locally multilinear with the
illumination subspace being bilinearly combined with the
direct sum of the motion, deformation and texture
subspaces. While assuming local linearity may be intuitive,
we provide an analytical description of this image space in
terms of different physical factors that affect the image
formation process.

. This result allows us to analyze theoretically the validity of
many of the linear, locally linear, and multilinear ap-
proaches existing in the computer vision literature while
also identifying some of the physical constraints under
which they are valid. In fact, as explained in Section 3.1, we
can now understand theoretically why some methods have
worked well in some situations, and not so well in others.

. We show that since we can analytically express the image
space, we can estimate the motion, deformation, and
lighting parameters without needing a large number of
training examples to first learn the characteristics of this
space, and the estimates are not a function of the learning
data. This analytical expression can be used in future with
learning-based methods for more efficient image modeling.
Some initial work in this direction was presented in [33].

The paper is organized as follows: Section 2 presents the main

result and an outline of the proof. Details of the derivation are given

in the supplemental material, which can be found on the Computer

Society Digital Library at http://doi.ieeecomputersociety.org/

10.1109/TPAMI.2010.216. We discuss the implications of the result

in face recognition in Section 3. In Section 4, the application of this

result to tracking is presented. Experimental results are given in

Section 5, where we analyze the numerical accuracy of the

theoretical results. We also show some results of tracking a face

with expression variations through pose and lighting changes.

Finally, Section 6 concludes the paper and highlights future work.

2 THEORETICAL DERIVATION OF THE IMAGE

APPEARANCE SPACE

2.1 Problem Formulation

Consider an object whose images are being captured by a static

perspective camera. We attach the world reference frame to the

camera. Let the 3D surface of the object be described by Cðu; vÞ 2
IR3 in the object reference frame, where C is parameterized using u

and v. Consider two time instances, t1 and t2 ¼ t1 þ�t, between

which the object can move rigidly and deform (see Fig. 1).

Let the pose of the object with respect to the camera reference
frame before the motion be defined by the translation T and
rotation matrix R. The rigid motion of the object is defined as the
translation �T ¼ V�t of the centroid and the rotation �� ¼ !�t
about the centroid of the object during the time interval �t. �R ¼
e!̂�t is the rotation matrix due to ��, and !̂ 2 soð3Þ is the skew-
symmetric matrix corresponding to ! 2 IR3. Deformation is defined
in the object reference frame. While the object is deforming, its
texture may also change and the illumination may be different at t1
and t2. Our goal is to express the image I t2 mathematically as a
function of I t1 , motion �T and ��, deformation, illumination, and
texture change. This will allow us to describe the image appearance
variation in terms of the physical parameters.

We make the following assumptions: Assumption A1 is made

since we are describing the local image appearance space.
Assumptions A2 and A3 are valid in most practical situations.

A1. �t is small, which implies that the rigid motion and
deformation between t1 and t2 are small. Illumination
change can be arbitrary.

A2. Illumination is represented by a finite dimensional linear
orthogonal basis.

A3. Cðu; vÞ is smooth and the deformation is smooth, allowing
@2C
@u@t ¼ @2C

@t@u and @2C
@v@t ¼ @2C

@t@v , and albedo � is spatially smooth.

We prove that under suitable situations, the image space of a
moving and deforming object under varying illumination is locally
multilinear. For ease of explanation, we start from a fixed rigid
object under varying illumination. Then, we consider the problem
of a moving rigid object under varying illumination. These are
overviews of existing work. Next, we consider the main case of
interest in this paper, a moving and deforming object under
varying illumination (Theorem 1). Then, starting from this
theorem, we derive two Corollaries of a fixed deforming object
under varying illumination (Corollary 1) and a moving and
deforming object under fixed illumination (Corollary 2).

2.2 Fixed Rigid Object under Varying Illumination
(Review of [1])

In [1], [20], the authors showed that when a rigid object is fixed
with respect to the camera, the reflectance image I of size P �Q
pixels can be represented as

I ¼ BlðMÞ �l l; ð1Þ
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where the 2D tensor I 2 IR1�P�Q is the reflectance image, l 2 IRNl�1

is the illumination coefficient vector determined by the illumination

conditions, Bl 2 IRNl�P�Q is the tensor version of a set of basis

images, M is the 3D model of the object, including both the 3D

shape and texture, and �l is the mode-n product [14] along the

illumination dimension.1 It has been shown in [1] that for a

Lambertian surface object with attached shadows, more than

99.22 percent of the energy can be captured by the first nine bases

when spherical harmonics functions are used, i.e.,Nl � 9. When the

Lambertian reflectance property is not satisfied, higher orders of the

spherical harmonics functions will be needed [24].

2.3 Moving Rigid Object under Varying Illumination
(Review of [31])

Under assumptions A1 and A2, the authors in [31] proved that the

image space can be approximated by a bilinear function of the

illumination and rigid motion parameters, i.e.,

I ¼ ðBl þ Bml �m mÞ �l l; ð2Þ

where Bml 2 IR9�6�P�Q is the tensor version of the motion bases,

m ¼ ð�TT;��TÞT is the motion parameter vector, where �T is

the translation of the centroid of the object and �� is the rotation

about the centroid of the object. The exact forms of bi, Bl, and Bm
can be found in [1], [31]. Although this theory incorporates motion

into the framework, it requires the object to be rigid.

2.4 Mathematical Model of Deformation

Consider that the pose of the object is fixed with respect to the

camera, but that it is deforming. The surface of the object is a

function of time, i.e., Cðu; v; tÞ : IR2 � ½0; T Þ ! IR3. It can be shown

that under proper parameterization, nonrigid deformation can be

modeled such that each point on the surface is evolving only along

its surface normal direction, with an amount �ðu; v; tÞ defined at

this point, i.e,

@Cðu; v; tÞ
@t

¼ �ðu; v; tÞN ðu; v; tÞ; ð3Þ

where Nðu; v; tÞ is the surface normal at Cðu; v; tÞ. The derivation of

this model can be found in Section 2.1 of [22]. Thus, given the

parameterization ðu; vÞ, a deformation of the object can be

identified via �ðu; v; tÞ. Although other models may also work,

this model is chosen for its simplicity in describing the nonrigid

deformation. At the time instance t, �ðu; v; tÞ is a 2D function and

can be decomposed using most of the 2D transformation

techniques, including 2D unitary transforms, wavelet transforms,

and B-spline basis among others. In (A3), we stated that the

deformation is smooth, which means the function �ðu; v; tÞ (which

describes the amount of shape change at each point ðu; vÞ) is

smooth. Thus, most of the energy of �ðu; v; tÞ at time instance t

would be concentrated in the low frequency components, and can

be decomposed using the top ND bases as

�ðu; v; tÞ ¼ �dðu; vÞ �d bdðtÞ; ð4Þ

where �d 2 IRND�1 is the vector of the top ND basis at ðu; vÞ, bd 2
IRND�1 encrypts the deformation at ðu; vÞ as a function of t, and �d
indicates the tensor product along the deformation dimension.

In (A3), we assumed the texture to be spatially smooth. Using

the same parameterization, the texture function on the surface can

be decomposed using top N� bases as

�ðu; v; tÞ ¼ ��ðu; vÞ �� b�ðtÞ; ð5Þ

where b� 2 IRN��1 and �� 2 IRN��1. Similarly to the above notation,

�� indicates the tensor product along the texture dimension. It is

important to note a difference between (4) and (5). In (4), � is the

rate of change of the surface curvature (shape), while (5) describes

the change of albedo � itself. Thus, for �, we do not require the

temporal change of it to be smooth (see assumption (A3)).

2.5 Main Results

Theorem 1. The image space of a rigidly moving and deforming object

under varying illumination is locally multilinear, with the illumina-

tion subspace and the texture subspace being trilinearly combined

with the direct sum of the motion and deformation subspaces, i.e.,

I t ¼ Bl�md �l lðtÞ �� b�ðtÞ �m

V�t
!�t
bd�t

1

0
BB@

1
CCA; ð6Þ

where Bl�dm 2 IRNl�N��ð6þNDþ1Þ�P�Q is the tensor version of the joint

illumination, texture, rigid motion, and deformation bases.

The proof of the theorem and the detailed notations are given in
the supplemental material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2010.216. The theorem proves that the image
space of a moving and deforming object under varying illumina-
tion is a locally trilinear function of the illumination, deformation,
motion, and texture change parameters. The result uses the facts
that the illumination space is known to be low-dimensional and a
low-dimensional representation of the texture space is sufficient
for nonvisualization applications. The result is valid in a local
region around pose ðR;TÞ. The locality property comes because of
the small time interval assumption in A1.

The theorem stated above describes a very general condition,
i.e., all of the factors of the illumination, motion, deformation, and
texture are changing. When only a few of the parameters are
changing while the others are fixed, we get a few special
conditions. When the pose, object shape, and texture are fixed
and only illumination changes, by setting the V, !, bd to be zero
and b�ðtÞ to be a constant we get a linear subspace in the same
form of (1). When the deformation and texture are fixed while both
pose and illumination could change, then (6) degenerates into (2).

When the pose of the object is fixed and the shape, texture, and

illumination can change (i.e., deforming object at fixed pose), by

setting the V, ! parameters in (6) to be zero we have the following:

Corollary 1. Under Assumptions A1, A2, and A3, the image space of a

fixed deforming object under varying illumination is locally trilinear

in the illumination, deformation, and texture parameters, i.e.,

I ¼ ðB�l þ Bd�l �d bd�tÞ �� b� �l l; ð7Þ

where Bd�l 2 IRND�N��Nl�P�Q is the tensor version of the deforma-

tion, texture, and illumination basis, and B�l 2 IR1�N��Nl�P�Q is the

tensor version of the texture and illumination basis.

Similarly, when the illumination is fixed while the pose, shape,

and texture of the object could change (i.e., rigid motion and

deformation with fixed illumination), we can get the corollary

below.

Corollary 2. Under Assumptions A1, A2, and A3, the image space of a

rigidly moving and deforming object under fixed illumination is a

locally bilinear, with the texture subspace being bilinearly combined

with the direct sum of the motion and deformation subspaces, i.e.,

I ¼ G� þ Gmd� �m
V
!
bd

0
@

1
A�t

0
@

1
A�� b�; ð8Þ
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where G� ¼ B�l �l l and Gmd� ¼ Bmd�l �l l. B�l 2 IRN��Nl�P�Q is the
tensor version of the texture and illumination basis, and Bmd�l 2
IR6�ND�N��Nl�P�Q is the tensor version of the joint rigid motion,
deformation, texture, and illumination basis.

2.6 Discussion of the Theoretical Results

The result in (6) implies that the illumination and texture subspaces
are trilinearly combined with the union of the rigid motion and
deformation subspaces. The result in (6) has two major contribu-
tions: First, it provides a physics-based, analytical representation of
the multilinear bases for representing the image appearance space,
while all previous methods have relied on learning such bases from
data. Second, it shows that under a set of assumptions that often
hold, it is possible to approximate the image appearance space to
be multilinear (which can be simplified in special cases).

We used three assumptions for deriving Theorem 1 and
Corollaries 1 and 2. Assumption A1 is reasonable for most video
sequences captured under frame rates between 15 and 30 fps, and
can be used to validate the theoretical model. Assumption A2
essentially says that we use a basis illumination model. This is
widely used. For Lambertian surfaces, the dimension is small,
while a non-Lambertian surface requires higher dimensions. Also,
the basis function can be represented using spherical harmonics,
wavelets, and other orthogonal representations. Our derivation
does not need a specific choice, only that it is a function of the
surface normal. Assumption (A3) is again reasonable for many
objects and has been widely used for modeling deformation [22].

3 MODELING THE FACE IMAGE SPACE

When confined to face images of a single person, the variations of
the texture and shape are usually small while the change due to
illumination may still be drastic. Thus, from theorem, by
expanding the b� around the mean face texture coefficient the
image space of faces becomes bilinear with the illumination being
bilinearly combined with direct sum of the motion, deformation,
and texture parameters, i.e.,

I t ¼ Bl��md þ Bl�md �m�

@b�
@t

V

!

bd

0
BBBB@

1
CCCCA

�t

0
BBBB@

1
CCCCA
�l lðtÞ;where Bl��md

¼ Bl�md �� b��:

ð9Þ

b�� is the mean face texture coefficient. Thus, (9) models face
appearance locally around the neutral mean shape and mean
texture of faces at the cardinal poses pj, while modeling globally
along the illumination dimension. This was the result we derived
in [32], and is a special case of Theorem 1.

To construct the image space representing all possible pose
and deformations, we divide the pose in pan and tilt directions
uniformly into a set of regions, each region being identified
with a cardinal point in pose and deformation space. The
effects of 3D translation on image plane can be removed by
centering and scale normalization, while in-plane rotation to a
predefined pose can mitigate the effects of rotation about the
z-axis. Thus the image of an object under arbitrary pose, p, can
always be described by the multilinear object representation at
a predefined ðTpd

x ;T
pd
y ;T

pd
z ;�

pd
z ; Þ, with only �x and �y

depending upon the particular pose. Thus, the image manifold
under any pose can be approximated by the collection of a few
tangent planes on distinct �j

x and �j
y, denoted as pj.

Although the result in (9) is locally multilinear along the pose
dimension, in the supplemental material, which can be found on
the Computer Society Digital Library at http://doi.ieeecomputer
society.org/10.1109/TPAMI.2010.216, we show that this piecewise

locally multilinear manifold can be embedded into a higher
dimensional globally multilinear subspace of much higher dimen-
sion (as was used in [29]).

3.1 Relation to Existing Methods

This theoretical study provides an understanding of the applic-
ability of many linear/multilinear models of object appearance/
shape representation used commonly in computer vision. We can
also understand the conditions under which these popular models
can be applied. Below we provide such an analysis, taking face
representation and recognition as an example (since all of the
models have been applied to faces).

PCA. From (9) we can see that when the illumination and pose
are fixed, the image space is linear in the shape and texture
parameters which encrypt the identity. This proves the validity of
the use of PCA under such scenarios. It explains the relatively
good performance of PCA when applied to face recognition under
fixed pose and illumination and poor performance when illumina-
tion is changing.

AAM/ASM. AAM/ASM [5] are 2D approaches that represent
shape and appearance using two separate linear sets of basis
vectors. Thus, a warping of the texture is needed to combine the
shape and texture together. With this warping, the image becomes
a nonlinear function of the shape, texture, and the pose para-
meters. In our approach, which is 3D-based, the texture is
inherently coupled with the deformation model, and results in
the multilinear formula in (6).

MLM. In MLM [26], [29], different factors (illumination, pose,
identity) are assumed to be globally multilinearly combined. We
show that lighting and texture are indeed trilinearly combined
with the direct sum of the motion and deformation subspaces.
Since this multilinearity property is local, MLM methods will be
more efficient and accurate when modeling local regions of the
image space. However, from the supplemental material, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2010.216, we see that
a global MLM is also valid if we use higher dimensions.

Local linearization. Probabilistic Appearance Model (PAM)
[16] uses a series of tangent planes along pose to approximate the
manifold; thus, it is also locally linear. Our theoretical result
provides an analytical description of this space. In [34], the authors
locally linearize the appearance manifold for tracking, but they
obtain the linearized basis from a learning algorithm. Again, we
provide an analytical description of this linear subspace which can
be used to obtain the bases in a manner that is not dependent on
the training data. The same reasoning is valid for locally linear
models like [21], [25].

Nonlinear approaches. In 3DMM, once the textured 3D shape
is obtained, it is combined with the illumination and camera
projection model, and thus the image pixel intensities are nonlinear
in the shape and texture coefficients. This is a detailed representa-
tion, but comes at the cost of higher computation due to
optimization on a nonlinear manifold. Nonlinear manifold is also
the approach taken in [15]. In a rough sense, we can say that the
proposed approach is somewhere between the 3D morphable
model and AAM. We are able to decouple the illumination, 3D
motion, deformation, and texture variations, while not requiring
the availability of large training data sets like both morphable
models and AAM/ASMs. However, it will probably not provide
high fidelity reconstructions like 3DMM.

4 APPLICATION IN FACE TRACKING

The locally multilinear image appearance model derived in Section 2
provides us with a method for tracking deforming objects under
deformation and varying illumination conditions. We start by
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registering a generic 3D face model to the first image of the video
sequence. For most of the video sequences, the time interval
between two consecutive frames is small; thus, assumption A1 is
valid. Letting m ¼ ð�T;��ÞT represent the rigid 3D motion
parameter, we can estimate m and other parameters as

ð̂l; m̂; b̂d; b̂�Þ ¼ arg min
l;m;bd;b�

I � Bl�md �l l�� b� �m
m

bd�t

1

0
B@

1
CA

�������

�������

2

þ �mkmk2 þ �dkbdk2;

ð10Þ

where x̂ denotes an estimate of x. Since the motion and the
deformation between consecutive frames are small, we add
regularization terms to the above cost function in the form of
�mkmk2 and �dkbdk2. The L2 norm over the image tensor I is taken
over the pixels within the object region, which have nonzero values
in the image appearance bases. Thus, the proposed method is robust
to clutter in the background. Since the image I lies approximately in
a locally multilinear space of illumination, rigid motion, deforma-
tion, and texture variables, such a minimization problem can be
achieved by alternately minimizing over each parameter.

Although the sequence of parameter estimation can be altered,
the speed of convergence will be affected. According to the
assumptions (A1, A3), the time interval between the consecutive
frames should be small; thus, the rigid motion, shape deformation,
or albedo (texture)2 change relatively slowly along time t when
compared with lighting l. Due to this reason, we first estimate the
illumination parameter l, then estimate other parameters using the
estimated l̂t to make the convergence faster. When illumination
changes gradually, the sequence of estimation can be altered
without much loss of convergence speed.

5 EXPERIMENTAL RESULTS

5.1 Numerical Accuracy Analysis

To evaluate the theory quantitatively, we performed a numerical
error analysis. We chose some typical range of rigid motion,
deformation, and texture variation between two consecutive
frames in a video sequence. We computed the difference between
the theoretically predicted pixel intensities and the true pixel
intensities, normalized by the true values, and took the mean of
this normalized error over the face region in the image. Assuming
the face to be a hemisphere, we assumed that in 1 second, the
deformation will not exceed 5 percent of the radius of this
hemisphere, and set 5%

30 frames as one unit on the axis of deformation.
Similarly, for the texture change, we assume the variance of the

change will not exceed 5 percent of the square of the mean value of
the original texture. For the rotation, we assume the maximum
degree the object can rotate in 1 second is 30 degrees, which means
1 degree between two consecutive frames.

In Fig. 2, we plot the normalized error versus (Fig. 2a)
deformation and texture variation, (Fig. 2b) deformation and rigid
motion, and (Fig. 2c) texture variation and motion. We choose
rotation along the vertical axis for the motion (as that is a
common motion of the face in video). Fig. 2 indicates that within
a typical range of motion, deformation, and texture variation, the
normalized error between the predicted value and the true value
will not exceed 6 percent. This is the worst-case performance and
happens when the object is deforming and rotating.

5.2 Application to Tracking

As an application of the theory, we use it for tracking faces under
illumination and expression variations (Figs. 3 and 4). We use the
face image space of Section 4.3 We use the method described in
Section 4 for estimating the pose, illumination, and deformation
parameters.4 In the first row of Fig. 3, we show the tracking of a
rigid face under varying pose and illuminations, while in the first
row of Fig. 4, we show the tracking of a face with changing
expressions. The 2D locations of the face are shown and the pose
parameters are represented as the Euler angle of the face with
respect to the frontal one, following the “z-x-z” convention [13]. In
Figs. 3b, 3c, 4b, and 4c, we show the norm of the estimated
illumination parameters and the estimated 3D pose in Euler angles,
respectively. The key frames shown in the first rows are marked
using the dashed lines.

5.2.1 Accuracy of the Estimates

Since we do not have access to ground truth, the estimation
accuracy can be judged by comparing against the original images
and the back projection of feature points from the 3D model to the
image plane. The norm of the illumination coefficient shows the
intensity of the illumination, and the shift in Fig. 3b around the
160th frame is due to the sudden switching on and off of the local
light source. This correlates with the images. Such a change is not
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Fig. 2. Accuracy analysis of the theoretical model. The error is computed as the squared difference between the theoretically predicted pixel intensities and the true pixel
intensities, normalized by the true values, and taking its mean over the face region.

2. We use the terms “texture” and albedo interchangeably.

3. To construct the multilinear bases, we first define a local coordinate on
the object surface ðu; vÞ and choose 2D transformation bases defined on this
local coordinate system (in our experiment, we use 2D DCT bases), which
gives the �dðu; vÞ. Then, this �dðu; vÞ is then substituted into (6) and (11) in
the supplemental material. Substituting (6) and (11) into (9) in the
supplemental material, the multilinear bases can be computed.

4. For modeling deformation, we use 144 2D DCT bases (12 by 12); it is
possible to to use more sophisticated bases to compact the facial
deformation and texture variation into a much lower order. As a 3D point
cloud model is used, there are in total about 30,000 points on the model. The
tracking is performed by using only the pixels from the regions around the
2D projections of the 3D mesh. The 3D model is registered to the first frame
for computing the tensor bases at the initial position.



seen in the estimates using the linear model described below. In
Fig. 4b, we see that the illumination change is more significant and
this is in accordance with the images shown in Fig. 4a. In Figs. 3d
and 4d, we plot the norm of the estimated deformation parameter
bdðtÞ in the video sequence shown in the first row of Figs. 3 and 4,
respectively. The maximum of the norm of bdðtÞ within the
sequence is normalized to be 1. The larger the norm is, the larger
the expression is from the mean face. In Fig. 4d, the large
magnitude of bd from about the 50th frame to the 125th frame
corresponds to the yawn, while the plateau after 200th frame
corresponds to the frown, as shown in the key frames. In Fig. 3d,
the magnitude of bdðtÞ has only small variations, in accordance
with the steady expression on the face. These results show that we
can decouple and estimate the 3D pose, illumination, and
deformation parameters given a video sequence.

5.3 Comparison Against Linear Model

A linear model is mostly used for describing the image space due
to a single variation factor, like identity, illumination, pose, etc.
Mostly such models are obtained by applying machine learning
techniques onto a collection of training data. Such a model is a

poor fit for describing the image space due to multiple factors (e.g.,
pose, lighting, and deformation) as it mixes different factors
together and lacks a clear physical interpretation of the basis
functions. We compare the proposed model in (6) against a linear
model to show that the multilinear model is indeed more accurate
and robust than a simple linear model.

From (6), by rewriting lðtÞ and b�ðtÞ in incremental forms of

lt1 ¼ lt0 þ�l and b�t1 ¼ b�t0 þ�b�, we can easily obtain an

analytical linear expansion of the image space in terms of the

change of the illumination, pose, deformation, and texture

variation as

I ¼ Bl� �l �l�� b�t0 þ Bl� �l lt0 �� �b� þ Bl�md �l lt0 �� b�t0

�m

Vt0 �t
!t0 �t
bdt0 �t

1

0
BB@

1
CCA: ð11Þ

Thus, we obtain a tangent plane of the image appearance

manifold in terms of the change of the parameters at the specific

illumination lt0 , texture �t0 , shape bdt0 , and pose ðVt0 ; !t0 Þ, which is
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Fig. 3. One example of tracking using the theoretical model on real data under changes of pose and lighting. In (a), some key frames with the 2D locations and 3D Euler
angles are shown. In (b), we show the norm of the estimated illumination coefficients as a function of time, (c) shows the estimated 3D pose represented with Euler angle,
while (d) shows the norm of the estimated deformation parameter bdðtÞ during the same period of time. The key frames shown in the first row are marked on the plots in
(b), (c), and (d) with dotted lines. In (e), (f), and (g), we show the norm of the estimated illumination coefficients, 3D pose in Euler angle, and the norm of the estimated
deformation parameter using the Linear model discussed in Section 5.3.



the point at which the tensor bases Bl�md is computed. To evaluate

the accuracy of such a model against the proposed one in (6), we

apply it to track the same sequences the multilinear model has

been applied to, and show the estimated illumination, pose, and

deformation parameters in Figs. 3e, 3f, 3g, 4e, 4f, and 4g. In Figs. 3e,

3f, and 3g, we can see clearly that up to the 160th frame, in which

period only the pose changes, the linear model is able to track the

sequence. However, after the 160th frame, where both illumination

and pose change, the linear model begins to lose track. Even the

change in the illumination is not captured clearly by the linear
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Fig. 4. Another example of tracking using the theoretical model on real data under changes of pose, lighting, and expressions. In (a), some key frames with the 2D
locations and 3D Euler angles are shown, (b) shows the norm of the estimated illumination coefficients as a function of time, (c) shows the estimated 3D pose represented
with Euler angle, and (d) shows the norm of the estimated deformation parameter bdðtÞ during the same period of time. The larger the norm of bdðtÞ is, the larger the
expression deformation is. The key frames shown in the first row are marked on the plots in (b), (c), and (d) with dotted lines. In (e), (f), and (g), we show the norm of the
estimated illumination coefficients, 3D pose in Euler angle, and the norm of the estimated deformation parameter using the Linear model discussed in Section 5.3.

Fig. 5. The back projection of the the feature points from the 3D face model onto the image plane using the estimated pose parameters for the 193rd and 267th frames
shown in Fig. 3. (a) and (b) are obtained with the pose estimation results using the multilinear mode in (6), while (c) and (d) are obtained with the ones using the linear
model in (11).



model. The loss of track can be observed more obviously in Fig. 5,

in which we compare the back projection of the feature points on

the 3D face model onto the image plane using the estimated pose

parameters obtained with the multilinear model in Fig. 5a and

Fig. 5b against the ones using the linear model in Fig. 5c and

Fig. 5d. In Figs. 4e, 4f, and 4g, the linear model begins to lose track

very soon after the 50th frame due to the fact that all of the

parameters are changing simultaneously and cannot be decoupled

from each other.

6 CONCLUSIONS

In this paper, we analyzed the accuracy of linear and multilinear

object representation models from the fundamental physical laws

of object motion and image formation. We proved that the image

appearance space is multilinear, with the illumination and texture

subspaces being trilinearly combined with the direct sum of the

motion and deformation subspaces. Using this result, we discussed

the applicability of many of the linear and multilinear approaches

existing in the computer vision literature, including PCA, AAM/

ASM, and MLM, locally linear models, and 3DMM. We provided

the application of this proposed model in illumination invariant

deformable object tracking. Experimental accuracy analysis of the

theoretical results was also presented. Future work will focus on

the application of this result in object recognition.
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