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Overview

This supplementary material contains the following:

– Normalized Area Under Curves (nAUC) values of the CMC curves on the
WARD and RAiD datasets.

– Formulation of the optimization problems as standard Binary Integer Pro-
grams (BIP).

– Equivalence of one-to-one and generalized NCDA problems (i.e., NCDA
with same and variable set of persons across cameras) is proved. One-to-
one NCDA can be derived from the generalized NCDA if the condition that
the same set of persons appear in all the cameras is imposed on the latter
problem.

– Settings for Person Re-Identification Experiments and Similarity Score Gen-
eration.

– Methodology for Pairwise Similarity Score Generation for Spatio-temporal
Cell Tracking.
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1 Comparison of nAUC Values

Table 1: Comparison of NCDA with state-of-the-art methods on the WARD dataset
in terms of the nAUC values.

Camera
SDALF WACN ICT FT

NCDA NCDA
pair on ICT on FT

1-2 0.6487 0.7328 0.8780 0.9136 0.8835 0.9317

1-3 0.6825 0.7496 0.8240 0.8905 0.8299 0.8981

2-3 0.7206 0.7966 0.8881 0.9278 0.8910 0.9330

For all 3 camera pairs, ‘NCDA on FT’ gives the best nAUC values.

Table 2: Comparison of NCDA with state-of-the-art methods on the RAiD dataset in
terms of the nAUC values.

Camera
SDALF WACN ICT FT

NCDA NCDA
pair on ICT on FT

1-2 0.7987 0.9072 0.9138 0.9220 0.9373 0.9345

1-3 0.6576 0.6979 0.8145 0.8110 0.8660 0.8618

1-4 0.7274 0.7674 0.8413 0.8523 0.8790 0.8885

2-3 0.7802 0.8057 0.8328 0.8648 0.8700 0.9008

2-4 0.7956 0.8441 0.8615 0.9010 0.9008 0.9210

3-4 0.8014 0.8256 0.8813 0.8943 0.8990 0.9138

For all 6 camera pairs, either ‘NCDA on ICT’ or ‘NCDA on FT’ give the best
nAUC values. Also for the 2 cases where ‘NCDA on ICT’ gives better nAUC
values than ‘NCDA on FT’, the difference is in the 3rd place of decimal.
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2 Standard BIP Formulation of the Optimization
Problems for Network Consistent Person
Re-identification

For a matrix A = [a1 a2 · · · an] ∈ Ra×b, let us define the vectorization oper-
ator vec (.) as, vec (A) = [aT1 aT2 · · · aTn ]T =

¯
A (say) ∈ Rab. Now, the global

similarity score in Eqn. (3) of the main paper can be written as,

C =

m∑
p,q=1
p<q

(vec (C(p,q)))T vec (X(p,q))

=

m∑
p,q=1
p<q

(
¯
C(p,q))T

¯
X(p,q) (1)

Clubbing all the vectorized C(p,q)s in a single vector we can write,

¯
C = [(

¯
C(1,2))T (

¯
C(1,3))T · · · (

¯
C(1,m))T (

¯
C(2,3))T (

¯
C(2,4))T · · · (

¯
C(2,m))T

· · · · · · (
¯
C(m−1,m))T ]T (2)

Similarly, all the vectorized X(p,q)s can be clubbed as,

¯
X = [(

¯
X(1,2))T (

¯
X(1,3))T · · · (

¯
X(1,m))T (

¯
X(2,3))T (

¯
X(2,4))T · · · (

¯
X(2,m))T

· · · · · · (
¯
X(m−1,m))T ]T (3)

Using Eqn. (2) and (3), Eqn. (1) can be written compactly as,

C =
¯
CT

¯
X (4)

Let us express Eqn. (2) of the main paper in terms of
¯
X(p,q).

n∑
j=1

xp,q
i,j = xp,q

i,1 + xp,q
i,2 · · ·+ xp,q

i,n = 1 ∀i = 1 to n

=⇒ [1, 1, · · · , 1][xp,q
i,1 , x

p,q
i,2 , · · · , x

p,q
i,n]T = 1 ∀i = 1 to n (5)

and

n∑
i=1

xp,q
i,j = xp,q

1,j + xp,q
2,j · · ·+ xp,q

n,j = 1 ∀j = 1 to n

=⇒ [1, 1, · · · , 1][xp,q
1,j , x

p,q
2,j , · · · , x

p,q
n,j ]

T = 1 ∀j = 1 to n (6)
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Writing Eqns. (5) and (6) respectively for all rows and columns of X(p,q) we
get,



n columns︷ ︸︸ ︷
1 0 0 · · · 0

n columns︷ ︸︸ ︷
1 0 0 · · · 0 · · ·

n columns︷ ︸︸ ︷
1 0 0 · · · 0

0 1 0 · · · 0 0 1 0 · · · 0 · · · 0 1 0 · · · 0
...

...
...
. . .

...
...

...
...
. . .

...
. . .

...
...

...
. . .

...
0 0 0 · · · 1 0 0 0 · · · 1 · · · 0 0 0 · · · 1
1 1 1 · · · 1 0 0 0 · · · 0 · · · 0 0 0 · · · 0
0 0 0 · · · 0 1 1 1 · · · 1 · · · 0 0 0 · · · 0
...

...
...
. . .

...
...

...
...
. . .

...
. . .

...
...

...
. . .

...
0 0 0 · · · 0 0 0 0 · · · 0 · · · 1 1 1 · · · 1





xp,q
1,1

xp,q
2,1
...

xp,q
n,1

xp,q
1,2

xp,q
2,2
...

xp,q
n,2
...

xp,q
1,n

xp,q
2,n
...

xp,q
n,n



=



1
1
...
...
...
...
1


(7)

Writing the matrix as A and the vector as
¯
X(p,q) in Eqn. (7) the equation

can be written as,

A
¯
X(p,q) =

¯
1 (8)

where,
¯
1 is a vector consisting of all 1’s.

Relation (8) can be written for all the camera pairs, i.e., ∀p, q = [1, · · · ,m], p <
q. In a block matrix form these can be written as,


A 0 0 · · · 0
0 A 0 · · · 0
...

...
...
. . .

...
0 0 0 · · · A





¯
X(1,2)

¯
X(1,3)

...

¯
X(1,m)

¯
X(2,3)

¯
X(2,4)

...

¯
X(2,m)

...

¯
X(m−1,m)



=
¯
1 (9)

Denoting the matrix as
¯
A and the vector as

¯
X, Eqn. (9) can be written as,

¯
A

¯
X =

¯
1 (10)

Let us express Eqn. (7) of the main paper in a similar way. The equation can
be written as,

−xp,q
i,j + xp,r

i,k + xr,q
k,j ≤ 1 (11)
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Let us, first, write the set of these constraints for a particular triplet of cameras
denoted by p, q, r with p < r < q. For this let us introduce some more notations.
Let the jth column of X(p,q) be denoted as,

x
(p,q)
j = [xp,q

1,j , x
p,q
2,j , · · · , x

p,q
n,j ]

T

Let
¯
1i denote a vector of all 0’s except a 1 at the ith position. Let

¯
0 denote a

vector of all 0’s.

Keeping i = 1; j = 1 we, first, vary k = 1, 2, · · · , n in Eqn. (11) to get,

−xp,q
1,1 + xp,r

1,1 + xr,q
1,1 ≤ 1 for k = 1

−xp,q
1,1 + xp,r

1,2 + xr,q
2,1 ≤ 1 for k = 2

−xp,q
1,1 + xp,r

1,3 + xr,q
3,1 ≤ 1 for k = 3

...

−xp,q
1,1 + xp,r

1,n + xr,q
n,1 ≤ 1 for k = n

The above set of of equations can also be written as,


−

¯
11

¯
0

¯
0 · · ·

¯
0

¯
11

¯
0

¯
0 · · ·

¯
0

¯
11

¯
0

¯
0 · · ·

¯
0

−
¯
11

¯
0

¯
0 · · ·

¯
0

¯
0

¯
11

¯
0 · · ·

¯
0

¯
12

¯
0

¯
0 · · ·

¯
0

−
¯
11

¯
0

¯
0 · · ·

¯
0

¯
0

¯
0

¯
11 · · ·

¯
0

¯
13

¯
0

¯
0 · · ·

¯
0

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...
−

¯
11

¯
0

¯
0 · · ·

¯
0

¯
0

¯
0

¯
0 · · ·

¯
11

¯
1n

¯
0

¯
0 · · ·

¯
0





x
(p,q)
1

x
(p,q)
2

x
(p,q)
3

...

x
(p,q)
n

x
(p,r)
1

x
(p,r)
2

x
(p,r)
3

...

x
(p,r)
n

x
(r,q)
1

x
(r,q)
2

x
(r,q)
3

...

x
(r,q)
n



≤
¯
1 (12)
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For the same camera triplet (p, q, r), appending the rows corresponding to
i = 1, j = 2 and k = 1, 2, · · ·n we get,



−
¯
11

¯
0

¯
0 · · ·

¯
0

¯
11

¯
0

¯
0 · · ·

¯
0

¯
11

¯
0

¯
0 · · ·

¯
0

−
¯
11

¯
0

¯
0 · · ·

¯
0

¯
0

¯
11

¯
0 · · ·

¯
0

¯
12

¯
0

¯
0 · · ·

¯
0

−
¯
11

¯
0

¯
0 · · ·

¯
0

¯
0

¯
0

¯
11 · · ·

¯
0

¯
13

¯
0

¯
0 · · ·

¯
0

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...
−

¯
11

¯
0

¯
0 · · ·

¯
0

¯
0

¯
0

¯
0 · · ·

¯
11

¯
1n

¯
0

¯
0 · · ·

¯
0

¯
0 −

¯
11

¯
0 · · ·

¯
0

¯
11

¯
0

¯
0 · · ·

¯
0

¯
0

¯
11

¯
0 · · ·

¯
0

¯
0 −

¯
11

¯
0 · · ·

¯
0

¯
0

¯
11

¯
0 · · ·

¯
0

¯
0

¯
12

¯
0 · · ·

¯
0

¯
0 −

¯
11

¯
0 · · ·

¯
0

¯
0

¯
0

¯
11 · · ·

¯
0

¯
0

¯
13

¯
0 · · ·

¯
0

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...

¯
0 −

¯
11

¯
0 · · ·

¯
0

¯
0

¯
0

¯
0 · · ·

¯
11

¯
0

¯
1n

¯
0 · · ·

¯
0





x
(p,q)
1

x
(p,q)
2

x
(p,q)
3

...

x
(p,q)
n

x
(p,r)
1

x
(p,r)
2

x
(p,r)
3

...

x
(p,r)
n

x
(r,q)
1

x
(r,q)
2

x
(r,q)
3

...

x
(r,q)
n



≤
¯
1 (13)

Progressing in this way for all triplets of cameras and all persons, and denot-
ing the resulting matrix (similar to the one in the left hand side of Eqn. (13))
as

¯
B, we get the loop constraints as,

¯
B

¯
X ≤

¯
1 (14)

where, the number of rows of
¯
B is the total number of loop constraint equations

which is
(
m
3

)(
n
2

)
(n− 2) = m(m−1)(m−2)n(n−1)(n−2)

12

Thus, using the objective function from Eqn. (4) and the constraints from
Eqns. (10) and (14) we can write the binary integer program in standard form
as,

argmax

¯
X ¯

CT

¯
X (15)

subject to
¯
A

¯
X =

¯
1

¯
B

¯
X ≤

¯
1

¯
X is composed of binary variables.

where, the dimensions of the matrices and vectors are as follows,

¯
C is m(m−1)n2

2 ×1,
¯
A is m(m−1)n×m(m−1)n2

2 and
¯
B is m(m−1)(m−2)n(n−1)(n−2)

12 ×
m(m−1)n2

2 .

In a similar way, the standard binary integer program formulation of the
optimization problem given in Eqn. (12) of the main paper for a variable number
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of targets across cameras can be expressed as,

argmax

¯
X

(
¯
CT − k

¯
1T )

¯
X (16)

subject to
¯
A

¯
X ≤

¯
1

¯
B

¯
X ≤

¯
1

¯
X is composed of binary variables.

where
¯
C,

¯
X,

¯
A and

¯
B are as explained above with the dimensions of them

changed to incorporate variable number of persons across cameras.
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3 Equivalence Between One-to-One NCDA (Eqn.(9) in
the main manuscript) and The Generalized NCDA
(Eqn.(12) in the main manuscript)

As shown in the previous section, if the similarity score matrix and the as-
signment matrix are vectorized, one can rewrite the problems in Eqn.(9) and
Eqn.(12) (in the main manuscript) in standard binary integer program form.
The one-to-one NCDA problem in Eqn.(9) (in the main manuscript) can be
rewritten as

argmax

¯
X ¯

CT

¯
X

subject to A
¯
X =

¯
1, B

¯
X ≤ d

¯
1

¯
X is composed of binary variables.

(17)

where A
¯
X =

¯
1 is the pairwise association constraint (same as Eqn.(4) in the

main manuscript) and B
¯
X ≤

¯
1 is the rewritten loop constraint (same as Eqn.(7)

in the main manuscript). The value of d is 1 in case of person re-identification
problems where the loop constraints are expressed on triplets of groups. However,
for the cell tracking problem, d = 2 as here the IP is written using quartet based
loop constraints (see Eqn.(8) in the main manuscript).

It was also shown that the generalized form of NCDA (Eqn.(12) in the main
manuscript) can, similarly be rewritten as,

argmax

¯
X

(
¯
CT − k

¯
1T )

¯
X

subject to A
¯
X ≤

¯
1, B

¯
X ≤ d

¯
1

¯
X is composed of binary variables.

(18)

Now let us prove that the problem expressed by Eqn. (18) is equivalent to
the problem expressed by Eqn. (17) under the condition that the number of
data-points/targets is constant and there exists a one-to-one mapping between
targets across groups. Let

¯
X∗ be the optimal solution to the problem expressed

by Eqn. (18). To prove the equivalence, we have to show that
¯
X∗ also maximizes

the problem expressed by Eqn. (17).

Since
¯
X∗ maximizes the objective function under the constraints as expressed

by Eqn. (18), we can write,

(
¯
CT − k

¯
1T )

¯
X∗ ≥ (

¯
CT − k

¯
1T )

¯
X

for {
¯
X : A

¯
X ≤

¯
1,B

¯
X ≤ d

¯
1}

(19)

where both
¯
X∗ and

¯
X are composed of binary variables.

Since {
¯
X : A

¯
X =

¯
1,B

¯
X ≤ d

¯
1} ⊂ {

¯
X : A

¯
X ≤

¯
1,B

¯
X ≤ d

¯
1}, the relation

(19) holds true for the feasible set of Eqn. (17), i.e.,



Suppl. for Network Consistent Data Association 9

(
¯
CT − k

¯
1T )

¯
X∗ ≥ (

¯
CT − k

¯
1T )

¯
X

for {
¯
X : A

¯
X =

¯
1,B

¯
X ≤ d

¯
1}

=⇒
¯
CT

¯
X∗ − k

¯
1T

¯
X∗ ≥

¯
CT

¯
X− k

¯
1T

¯
X

for {
¯
X : A

¯
X =

¯
1,B

¯
X ≤ d

¯
1}

with both
¯
X∗ and

¯
X composed of binary variables.

(20)

Now for all
¯
X and

¯
X∗ that satisfy A

¯
X =

¯
1 (i.e., for the case when the same

set of n targets appear in all m groups),

¯
1T

¯
X∗ =

¯
1T

¯
X

= Num. of group pairs × Num. of targets

This is because, each row and column of the assignment matrix for pair of groups
contains exactly one 1, resulting in the sum of all elements of the assignment
matrices being n.

Using the above relation in Eqn. (20) we get,

¯
CT

¯
X∗ ≥

¯
CT

¯
X

for {
¯
X : A

¯
X =

¯
1,B

¯
X ≤ d

¯
1}

with both
¯
X∗ and

¯
X composed of binary variables.

(21)

Therefore,
¯
X∗ also maximizes the problem (17), thus proving the equivalence.
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4 Settings for Person Re-Identification Experiments

In our implementation we used the following settings:

– To be consistent with the evaluations carried out by state-of-the-art meth-
ods, images were normalized to 128× 64. The H, S and V color histograms
extracted from the body parts were quantized using 10 bins each.

– Image pairs of the same or different person(s) in different cameras were ran-
domly picked to compute the feasible and infeasible transformation functions
respectively.

– All the experiments are conducted using a multi-shot strategy where 10
images per person is taken for both training and testing

– The RF parameters such as the number of trees, the number of features to
consider when looking for the best split, etc. were selected using 4-fold cross
validation.

– For each test we ran 5 independent trials and report the average results.
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5 Methodology for Pairwise Similarity Score Generation
for Spatio-temporal Cell Tracking

Each 2D image slice in the 4D confocal image stack is segmented into individual
cell slices using an adaptive Watershed segmentation method [1] that learns the
‘h-minima’ threshold directly from the image data so that a uniformity in cell
sizes is maintained as a result of the segmentation. Further the 3D image stacks
are temporally registered using a landmark-based registration scheme [2].

The similarity scores between 2D cell slices in spatio-temporally neighboring
images are obtained using a probabilistic graphical model based method, which
is briefly given below. However, please note that any other method that estimates
the similarities between the cell slices could also be used in conjunction with the
proposed NCDA method.

No  

Match 

(a) (b) 

Node vG
20 Node vG

31 ϵ N(vG
20) 

Cell vM
36 ϵ SG

48 (Candidate cell in IM 

for temporal match with cell/node 
48 in IG) 

Fig. 1: Graph Structure. (a) For tracking cells between two spatially and temporally
consecutive image slices, a graph is built on one of the images, where the nodes of the
graph are the segmented cells and two neighboring cells share an edge between them.
For temporal tracking, the cells undergoing division are set aside before constructing
the graph. (b) From the next image slice, the candidate matches for each cell in A
are estimated. Again, for temporal tracking, the children cells after division are also
removed from the image and the candidate set of best ‘K’ states for each node in A is
estimated through a search in B in a spatial window around the location of each of the
nodes in A. An additional state is added to each of the candidate sets corresponding
to the ‘no-match’ case.

5.1 Cell division detection:

First, cell division events are detected between every pair of temporally neigh-
boring images. If a cell has divided into two children cells in the next temporal
image slice, then ideally the shape of the parent cell should be very similar to
the combined shape of the children taken together and each of the children cells
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would have approximately half the size of the parent cell. This prior knowledge is
utilized in detecting cells undergoing division and both the parent and the chil-
dren cells are removed from the set if cells needed to be tracked (for temporal
association only).

5.2 Formation of CRF between pairs of image slices:

For every spatially/ temporally neighboring pairs of images, a spatial graph is
built on one of the images. Each 2D segmented cell slice is considered a node
and any two cells that share a boundary have an undirected link between them.
Please note that these graphs do not include the cells undergoing division and
the resulting children cells. As every image pair is registered in the dataset under
study, the set of candidate cells for matching from the second image (other than
the one on which the graph is built) is further reduced via spatial windowing.
These candidate cells constitute the set of probable states for each node. To
account for the case that a cell may or may not have a match in the neighboring
image slice, another ‘no match’ state is added each node’s candidates. The graph
formation and the candidate states for each node is presented through Fig. 1.

We further define a Conditional Random Field (CRF) on the graph con-
structed for each pair of images. A distance defined on the physical features
extracted from a cell and that of each of its candidate matches is used to con-
stitute the node potential. The spatial context is modeled on each of the edges
based on the relative location of the cell and its neighbors by utilizing the tight
spatial topology of the cell clusters. Details on the computation of node and edge
potentials can be found in [3].

5.3 Similarity score generation:

Loopy belief propagation based on ‘sum-product’ algorithm and message passing
scheme is run on every CRF thus formed and the marginal posteriors for each
node in pairs of images are computed. The posterior for a node is treated as
similarity scores between the corresponding cell on one image and each of its
candidate matches from the other image in the pair.
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