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Abstract

Detection and localization of image manipulations are
becoming of increasing interest to researchers in recent
years due to the significant rise of malicious content-
changing image tampering on the web. One of the major
challenges for an image manipulation detection method is
to discriminate between the tampered regions and other re-
gions in an image. We observe that most of the manipulated
images leave some traces near boundaries of manipulated
regions including blurred edges. In order to exploit these
traces in localizing the tampered regions, we propose an
encoder-decoder based network where we fuse represen-
tations from early layers in the encoder (which are richer
in low-level spatial cues, like edges) by skip pooling with
representations of the last layer of the decoder and use for
manipulation detection. In addition, we utilize resampling
features extracted from patches of images by feeding them
to LSTM cells to capture the transition between manipu-
lated and non-manipulated blocks in the frequency domain
and combine the output of the LSTM with our encoder. The
overall framework is capable of detecting different types of
image manipulations simultaneously including copy-move,
removal, and splicing. Experimental results on two stan-
dard benchmark datasets (CASIA 1.0 and NIST’16) demon-
strate that the proposed method can achieve a significantly
better performance than the state-of-the-art methods and
baselines.

1. Introduction

The advent of high technology devices like cameras,
smartphones, and tablets have led to significant improve-
ment and availability of image editing programs, e.g., Pho-
toshop, Gimp, Snapseed, and Pixlr. These editors provide
users an opportunity for digital altering and tampering of
an image without leaving visible traces. Image manipula-
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Figure 1. Example of tampered images from (a) NIST’16 [1] and
(c) CASIA 1.0 [20]. (a) shows copy-move (first row), splicing
(middle row), and removal (third row) manipulations with their
corresponding ground truths in column (b). (c) shows copy-move
(first row), and splicing (middle and third rows) manipulations
with their corresponding ground truths in column (d).

tion is becoming a serious concern as there are increasingly
more cases of people trying to hide or add some parts of
images for the purpose of misleading. Existing technol-
ogy offers many tools for skillful manipulators to hide the
traces of manipulation in such a way that naked eyes are
unlikely to be able to identify image tampering. The types
of image manipulation can broadly be classified into two
main categories: (1) content-preserving, and (2) content-
changing. Content-preserving manipulations (e.g., com-
pression, blur, and contrast enhancement) are considered as
less harmful since they do not change the semantic content.
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Figure 2. (a) A brief illustration of the proposed framework (LSTM-EnDec-Skip). Encoder-decoder architecture consists of convolutions
to learn spatial information. Skip connection is used to take advantage of early layers in CNN which are rich in spatial details. (b) 2-layer
LSTM with 64 cells at each layer. Please see Sec. 1.1 for an overview and Sec. 3 for the details.

However, the latter type (e.g., copy-move, splicing, and ob-
ject removal) is critical as image content is changed arbi-
trarily and consequently semantic meaning altered. Fig. 1
shows some example images that undergone different tam-
pering techniques from NIST’16 [1] and CASIA 1.0 [20]
datasets. These images have been post-processed to deceive
the human perceptual system. In recent years, there has
been noticeable interest in detecting and localizing content-
changing image manipulation. Most prior works on this
problem focus on classifying an image as manipulated or
non-manipulated [9, 21, 29, 38]. There are also a few works
that classify as well as localize manipulated regions in im-
ages [6, 5, 65]. For security/surveillance applications, it is
critical to not only determine images manipulated by differ-
ent techniques but also to localize the tampered regions in
manipulated images to prevent attackers. In this paper, we
present a novel architecture to detect and localize manipu-
lated regions at the pixel level. A significant number of im-
age manipulation approaches focus on a specific type of ma-
nipulation (e.g., copy-move, and splicing) [58, 32, 51]. One
approach might not do well on other types of tampering.
Also, it seems unrealistic to assume that the type of manip-
ulation will be known beforehand. In contrast to most prior
works that focus on some specific type of manipulation, we
have proposed a method which can localize all three major
content-changing manipulation types including copy-move,
splicing, and object removal. Our method is inspired by
the observation that boundaries of the manipulated regions
in an image are often smooth and not as sharp as edges in
other regions. We develop a deep convolutional neural net-
work (DCNN) based architecture to exploit this characteris-
tic of tampered artifacts near manipulative edges to improve
image forgery detection. Although post-processing proce-

dures may visually hide the traces of tampering in most ma-
nipulated images, we believe exploiting features extracted
by early layers of convolutional neural networks (which
are rich in spatial details) can retrieve sufficiently strong
cues for image manipulation detection. While early layers
in CNNs mostly encode low-level and generic image cues
(e.g., points, and edges), the deeper layer encodes higher-
level or specific image cues. As a manipulation detec-
tion approach needs to also analyze higher-level image cues
along with detecting smooth edges, a combination of spa-
tial resolution cues from different layers would potentially
boost detection performance. In this regard, our framework
uses a fusion of low-level and high-level representations for
manipulation detection (Fig. 2). Besides, we use resam-
pling features to capture artifacts like JPEG quality loss,
upsampling, downsampling, rotation, and shearing. These
features are extracted by Laplacian filter along with Radon
transform and fed to LSTM for learning the transition be-
tween manipulated and non-manipulated regions. Experi-
mental results on two standard benchmark datasets demon-
strate that the proposed approach outperforms the baselines
and existing methods by a large margin with more than 5%
absolute improvement in terms of AUC(ROC).

1.1. Framework Overview

Our framework consists of three main parts including 1)
LSTM network 2) Encoder-Decoder and 3) Skip connec-
tions. Fig. 2 demonstrates our proposed architecture. Re-
sampling features of each patch are extracted and used as
input for the LSTM network [25]. The main role of LSTM
cells is to learn the transition between manipulated and
non-manipulated blocks in the frequency domain. Encoder-
Decoder consists of convolutions to learn spatial informa-



tion and provide a finer representation of the binary mask.
Layers in the encoder are a residual block (two convolution
layers with short connection), max-pooling, batch normal-
ization, and Rectified Linear Unit (ReLU) as the activation
function. A decoder which follows encoder uses a fusion of
LSTM output features and low-level features of the encoder
as input. The decoder is constructed by upsampling, con-
volution, batch normalization, and activating feature maps
layers. Low-level layers are rich in spatial high-resolution
details which can play an important role in detecting blur
edges as the key cues for forgery detection. In order to
take advantage of blur boundaries in manipulated images,
we have concatenated the high-level and the low-level fea-
tures to find the best layer with rich features suited well
for forgery detection. In order to concatenate early layers
in encoder and up-sampled intermediate features, we have
applied a 1×1 convolution to have the same number of fea-
ture map as the intermediate ones. Upsampled features of
this concatenation lead to final features for pixel-wise pre-
diction of manipulation.

1.2. Main Contribution

The main contributions of this work are the following.
First, we propose a new framework for detecting manipu-
lated image regions by a fusion of spatial features and re-
sampling features extracted in the frequency domain. Sec-
ond, in order to utilize low-level image cues effectively in
detecting boundaries of manipulated regions, we exploit
skip connections in a deep CNN based semantic segmen-
tation network to fuse high-level spatial cues with low-level
ones. Third, our approach outperforms the baselines and
state-of-the-art methods by a large margin, with more than
6% and 5% absolute improvement on NIST’16 [1] and CA-
SIA 1.0 [20] datasets respectively in terms of AUC(ROC).
We also analyze the influence of features extracted from dif-
ferent layers of the encoder (as shown in Fig. 4) on the final
prediction task by our ablation study.

2. Related Work
There have been variety of works in the field of image

forensics for image manipulation detection and localiza-
tion. Some of them focus on specific types of manipulation
including resampling detection [7, 43], detection of copy-
move [58, 36, 18, 66], splicing [51, 15, 57, 50, 42, 32, 61,
41], and object removal [60, 54], while a few cover two or
more types of manipulation [53], [65], [6]. We briefly dis-
cuss some existing works below.

Traditional Physics-based Methods. Before the ad-
vances in deep learning-based approaches, traditional im-
age processing-based approaches were very popular to dis-
tinguish tampered images. Among the physics-based ap-
proaches, frequency domain characteristics and/or statisti-

cal properties of images have been explored in several prior
works [28, 56, 34, 55]. Analysis of artifacts by multiple
JPEG compressions [14, 55] and adding noise to the JPEG
compressed image in order to improve the performance of
resampling detection [40, 27] are other prominent works in
this direction.

Learning-based Methods. In recent years, inspired by the
success of deep neural networks in different visual recog-
nition tasks in computer vision, deep learning-based ap-
proaches have been popular choices for image forgery de-
tection. Some recent deep learning-based methods such as
stacked auto-encoders (SAE) [24] and convolutional neural
networks (CNN) [17, 46, 19, 22, 39, 23, 63, 2, 52, 44, 16]
have been applied to detect/classify image manipulations.
Authors in [10] exploit a convolutional neural network
(CNN) to extract characteristic camera model features from
image patches and analyze them by use of iterative cluster-
ing techniques. To detect JPEG compression, [3] takes ad-
vantage of machine learning methods. In [11], authors use
the ideas of image querying and retrieval to provide clues
to better localize forgeries. Work in [26] exploits an algo-
rithm to reduce the amount of information by having it learn
to localize manipulations without ground-truth annotations.
Facial retouching is one of the types of image manipulation
which has attracted attention in this field. A deep learning
approach to identify facial retouching has been applied in
[8, 45, 64, 59]. In order to train deep learning-based ap-
proaches in a supervised fashion, authors in [49] proposed
FaceForensics++ as a database of facial forgeries.

In order to identify the exact position of the manipu-
lated regions in an image, it is necessary to exploit tech-
niques which are able to localize these regions. Works in
[62, 5, 12, 32] use machine learning techniques in order
to do patch classification. Authors in [65] use object de-
tection method proposed in [47] to identify fake objects.
Unlike [65] which utilizes bounding box to coarsely lo-
calize manipulated object, we adopt a segmentation ap-
proach to segment out manipulated regions by classifying
each pixel (manipulated/non-manipulated). Semantic seg-
mentation approaches are suitable for fine-grained localiza-
tion of tampered regions in an image. A typical semantic
segmentation approach focuses on segmenting all meaning-
ful regions (objects). However, a segmentation approach for
localization of image manipulation needs to focus only on
the possible tampered regions which bring additional chal-
lenges to an existing challenging problem. To localize tam-
pered regions, [6] used an LSTM Encode-Decoder archi-
tecture and showed good accuracy. We also adopt a similar
architecture in this work. The major difference of our ap-
proach to [6] is taking advantage of spatial high-resolution
details from the early layers of CNN. Our effective use of
low-level details in the deep CNN based architecture im-



proves manipulation detection performance significantly.

3. Approach
Image manipulation techniques can be divided into three

most popular categories, i.e., copy-move, splicing, and ob-
ject removal. One of the major challenges in developing a
robust manipulation detection method is to simultaneously
handle different types of image forgeries. In order to de-
velop an effective general architecture for recognizing ma-
nipulation in all three categories mentioned, we used LSTM
Encoder-Decoder architecture as the backbone. Our frame-
work simultaneously exploits resampling features in the fre-
quency domain and spatial features extracted from different
layers of an encoder-decoder CNN for pixel-wise predic-
tions of manipulation. In order to exploit blurred edges as
a primary cue for manipulation localization, we fuse early
layers of the encoder which are rich in spatial details with
the final layer of the decoder to make the final prediction.
We discuss different components of our framework below.

LSTM. In order to localize manipulation in images, besides
CNN to extract spatial features, we utilize resampling fea-
tures to detect manipulations like upsampling, downsam-
pling, and compression. These resampling features in fre-
quency domain can be extracted using Laplacian filter along
with Radon transform which has been used in [12]. In this
paper, we utilize the LSTM [25] network to learn the cor-
relation between blocks of resampling features as shown in
Fig. 2. For an input image with size of 256×256×3, we first
divide it to 64 (8 × 8) non-overlapping patches. Therefore,
each patch has dimension of 32 × 32 × 3. Choosing patch
dimension is a challenging issue since, on one hand, resam-
pling is more detectable in larger patch sizes as the resam-
pling signal has more repetitions, on the other hand, small
manipulated regions will not be localized that well in small
patches. We try to choose a trade-off in selecting the patch
size.The first step to produce resampling features is applica-
tion of Laplacian filter. We use the magnitude square root of
3× 3 Laplacian filter which produces an image of the mag-
nitude of linear predictive error as presented in [12]. Next,
Radon transform is applied in order to find correlations in
the linear predictor error by accumulating errors along vari-
ous angles of projection. Finally, in the last step to produce
resampling features, we take FFT to find the periodic nature
of the signal.

Resampling features are the key parts in forgery detec-
tion as they capture the characteristics of different artifacts
such as JPEG quality above or below a threshold, upsam-
pling, downsampling, rotation clockwise, rotation counter-
clockwise, and shearing. Therefore, in order to have a net-
work which can detect the most possible manipulation tech-
niques, we need to utilize them. LSTMs are kind of recur-
rent neural network designed to recognize patterns in se-

quences of data, such as text, genomes, handwriting, the
spoken word, or numerical times series data. In computer
vision, LSTM network has been successfully used to cap-
ture the dependency among a series of pixels [13]. In or-
der to detect the correlation among the pixels, we utilize
LSTMs with resampling features as inputs. Ordering of
patches can effect the performance of LSTMs. Therefore,
we use Hilbert curves as they give a mapping between 1D
and 2D space that preserves locality fairly well. The Hilbert
curve has been shown to outperform many other curves in
maintaining the spatial locality, when transforming from a
multidimensional space to a one-dimensional space [37].
The basic element of a Hilbert curve is a U-shape. In the
first order Hilbert curve, we have a 2 × 2 square grid. We
start with our string in the top left corner, and drape it
through the other three squares in the grid to finish in the
top right corner. Now imagine that we double the size of
the grid to make a 4×4 grid for second order Hilbert curve.
The second order Hilbert curve replaces that U-shape by
four (smaller) ones, which are linked together. As we have
total 64 (8 × 8) blocks extracted from an image, we need
to use third order of Hilbert curve. After determining the
order of patches by Hilbert curve, resampling features of
these patches are fed to LSTM network.

Encoder-Decoder. Semantic segmentation has wide appli-
cation in image analysis tasks. Encoder-decoder based net-
works is a popular choice for pixel-wise segmentation of
images. In [4, 48] encoder-decoder architecture has been
presented for semantic segmentation. In these cases, deep
neural network architectures are presented where convolu-
tional layers are utilized in order to produce spatial heat
maps for semantic segmentation. In [6] SegNet [4] has been
applied as encoder-decoder network along with LSTM as
frequency domain feature extractor. Unlike [6], we follow
U-Net [48] architecture for our encoder-decoder network
which we empirically found to be more effective for im-
age manipulation detection. Each layer of encoder network
consists of convolution, residual unit, pooling, and activa-
tion functions. Besides long skip connections, we take ad-
vantage of short skip connections in Residual blocks. Con-
volution layers have increasing number of filters in encoder
which are followed by batch normalization and rectified lin-
ear unit (ReLU) as an activation function. We apply max-
pooling with stride 2 at the end of each layer in the encoder.

Decoder network consists of convolution to decrease the
number of feature maps and upsampling to produce binary
mask with the same size of original image. Different struc-
tures for decoder with different feature maps are shown in
Fig. 1 and 4. In the last layer of decoder, two heat maps are
used for the prediction of manipulated and non-manipulated
class. Each decoder follows basic operations - upsample,
convolution, and batch normalization. A softmax layer is
added at the end of the network for segmentation prediction



and classification.

Skip Connections. Both spatial details from early layers
and semantic ones from higher ones play an important role
in image segmentation. Success of U-Net [48] shows the
effect of layer fusion on image segmentation. Skip con-
nections help traverse information in deep neural networks.
Corresponding to our task for image forgery localization,
we have to find out the most effective features from either
high-level or low-level layers. In other words, we are trying
to find the layers which are rich in features for forgery de-
tection. Manipulated boundaries are the prominent features
to localize fake regions of an image. In most cases, ma-
nipulated regions have smooth boundaries. The best option
to focus on boundaries of an image is to take advantage of
early layers in CNN which are rich in spatial details. In our
proposed network, we use this important feature to improve
the state-of-art frameworks. Thus, we concatenate the early
layer of convolution network in encoder into the last layer
in decoder. In spite of U-net architecture, we have just used
the spatial information of early layers in encoder. This net-
work is shown in Fig. 2

Training Loss. During training, we use cross entropy loss
which is minimized to find the optimal set of parameters of
the network. Let θ be the parameter vector corresponding to
image tamper localization task. So, the cross entropy loss
can be computed as

L(θ) =
−1
M

M∑
m=1

N∑
n=1

1(Y m = n) log(Y m = n|ym; θ)

(1)

Here, M and N denote the total number of pixels and
the number of class. y represents the input pixel. 1(.) is an
indicator function, which equals to 1 if m = n, otherwise it
equals 0. We use adaptive moment estimation (Adam) opti-
mization technique in order to minimize the loss of the net-
work, shown in Eqn. 1. After optimizing the loss function
over several epochs, we learn the optimal set of parameters
of the network. With these optimal parameters, the network
is able to predict pixel-wise classification given a test image.

4. Experiments

In this section, we show our results for the proposed
model in comparison to state-of-art ones. As current
datasets do not have enough data for training process, we
pre-train our model on synthesized data created by [6]. In
addition, we finetune our model with training set provided
by NIST’16 [1] and CASIA 2.0 [20]. We have evaluated
our model on two datasets including NIST’16 [1] and CA-
SIA 1.0 [20].

4.1. Datasets

NIST’16 [1] is one of the most challenging datasets for
the task as it contains images tampered by all three tamper-
ing techniques including splicing, copy-move, and removal.
We utilize this dataset in order to show the ability of our ap-
proach in detecting all kinds of manipulated images. Also,
the images are post-processed in order to hide detectable
cues which make them more complicated.

CASIA [20] is one of the common datasets which has
been used to evaluate models for forgery detection. In this
dataset, two techniques including copy-move and splicing
are used to manipulate images. We exploit CASIA 2.0 in
training and CASIA 1.0 as the testing set.

4.2. Experimental Analysis

In this section, we discuss our evaluation results and
compare our models with state-of-art approaches. To train
the model, we use TensorFlow to define different layers of
the network. To run the experiment, we utilize multi-GPU
setting. We exploit two NVIDIA Tesla K80 GPUs in dif-
ferent sets of experiments. We use Adam optimizer with a
fixed learning rate of 0.0003. We train our model for 200K
iterations with a batch size of 16.

Evaluation Metric. We use F1 score and receiver oper-
ating characteristic (ROC) curve as evaluation metrics for
comparing the performance of models. ROC curve mea-
sures the performance of binary classification task by vary-
ing the threshold on prediction score. The area under the
ROC curve (AUC) is computed from the ROC curve that
measures the ability of a system for binary classification and
allows comparison between different methods. F1 score is
a pixel level evaluation metric for image manipulation de-
tection. We vary different thresholds and use the highest F1
score as the final score for each image.

4.2.1 Comparison against Existing Approaches

Some of the tamper localization techniques include DCT
Histograms [31], ADJPEG [9], NADJPEG [9], Patch-
Match [18], Error level analysis [33], Block Features [30],
Noise Inconsistencies [35], J-Conv-LSTM-Conv [5], and
LSTM-EnDec [6]. In order to compare our proposed ar-
chitecture with existing approaches, we measure the per-
formance of our method using area under the ROC curve
(AUC) metric tested on NIST’16 [1] dataset. From Ta-
ble 1, it can be observed that our proposed network out-
performs the existing methods (6.40%). The main reason
why our method achieves better performance than LSTM-
EnDec [6] is that LSTM-EnDec-Skip (ours) exploits spatial
information of early layers to seek tampering artifacts in-
cluding blurred edges. We also compare our network with
Error level analysis [33], Noise Inconsistencies [35], CFA
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Figure 3. ROC Curve on (a), (b) NIST’16 [1], and (c) CASIA 1.0 [20] for pixel-wise classification (segmentation).

Table 1. Pixel level AUC comparison on NIST16 [1] dataset. The
proposed (LSTM-EnDec-Skip) approach performs significantly
better than several state-of-the-art approaches and baselines.

Method NIST’16

DCT Histograms 0.545
ADJPEG 0.589
NADJPEG 0.656
PatchMatch 0.651
Error level analysis 0.428
Block Features 0.478
Noise Inconsistencies 0.487
LSTM-EnDec 0.793
LSTM-EnDec-Skip 0.857

pattern estimation [21], and RGB-N [65] tested on CASIA
1.0 [20] dataset. Table 2 shows AUC and F1 score compari-
son between our methods and some state-of-art ones. From
this table, we can see that our method outperforms existing
methods in both AUC and F1 score on CASIA [20] dataset.
Our method has better results than conventional methods
like Error level analysis [33] and Noise Inconsistencies [35]
since they all focus on specific tampering artifacts for local-
ization, which limits their performance while ours exploits
both resampling and low-level features.

4.2.2 ROC Curve

ROC curve illustrates the diagnostic ability of a binary clas-
sifier system as its discrimination threshold is varied. Fig-
ures 3 (a,b) show the ROC plots for image tamper local-
ization on NIST16 [1] for LSTM-EnDec-FullSkip (section
4.2.3 ) and LSTM-EnDec-Skip and Fig. 3 (c) demostrates
ROC curve of LSTM-EnDec-Skip on CASIA 1.0 [20]. We
also measure the area under the ROC curve. Table 1 and

Table 2. Pixel level AUC and F1 score comparison on CASIA [20]
dataset. We observe that the proposed LSTM-EnDec-Skip ap-
proach outperforms other methods by a large margin in both the
evaluation metric.

Method AUC score F1 score

Error level analysis 0.613 0.214
Noise Inconsistencies 0.612 0.263
CFA1 0.522 0.207
RGB-N 0.795 0.408
LSTM-EnDec 0.762 0.391
LSTM-EnDec-Skip 0.814 0.432

Table 2 demonstrate the AUC scores obtained by different
approaches. Our model achieves AUC of 0.857, 0.814 on
NIST16 and CASIA 1.0 respectively. From the ROC curves
as shown in Figs. 3 (b) and (c), we can see that the proposed
network classifies tampered pixels with high confidence.

4.2.3 Performance with Different Decoder Network

In order to emphasize the importance of early layers of en-
coder in manipulation localization, we perform an ablation
study with three different decoder architectures. In each
convolution layer of encoder, we use kernel size of 3×3×d,
where d is the depth of a filter. In the first layer of convo-
lution, we use 32 feature maps. Number of feature maps
doubles in each convolution layer and size of them reduces
by factor 2 after each max-pooling. Thus, we have 32, 64,
128, 256, and 512 feature maps in the first, second, third,
fourth, and fifth layer of encoder architecture respectively.
After 5 layers of max-pooling, 8 × 8 size feature maps are
produced as the outputs of encoder. In the residual unit,
we utilize 2 convolution layers and short skip connections
to sum the features. We utilize batch normalization at each
convolutional layer. As an activation function, we choose
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Figure 4. Different fusion of low-level and high-level features. (a)
LSTM-EnDec-FullSkip (b) LSTM-EnDec-FullSkip-2 (c) LSTM-
EnDec-CrossoverSkip

rectified linear unit (ReLU) which follows each convolu-
tional layer in encoder. We employ 3 × 3 size kernel for
decoder network.

• LSTM-EnDec-FullSkip. This architecture uses the idea
of U-nets [48] for image segmentation. In order to see
the effect of both low-level and high-level features, we
hierarchically fuse each layer of encoder to the corre-
sponding layer in decoder. Therefore, we take advantage
of both semantic and spatial information of layers in en-
coder. This architecture is shown in Fig. 4(a).

• LSTM-EnDec-FullSkip-2. In this architecture, we use
all upsampled layers of encoder. we apply convolution
with kernel size of 3× 3× 32 before concatenating them
all together in order to have same number of layers for all
skip connections. Also a 1× 1× 2 convolution is applied
in the last layer to produce final masks. This architecture
exploits fusion of all low-level and high-level features,

Table 3. Pixel level AUC comparison with different decoder net-
works on NIST16 [1] dataset to analyze the proposed network.

Method NIST’16

LSTM-EnDec-FullSkip 0.812
LSTM-EnDec-FullSkip-2 0.765
LSTM-EnDec-CrossoverSkip 0.781
LSTM-EnDec-Skip 0.857

shown in Fig. 4(b).

• LSTM-EnDec-CrossoverSkip. In order to use semantic
details in the last layer of decoder, instead of concate-
nating deep layers in encoder to early layers in decoder
(similar to U-net), we fuse deep layers to the last layer
of decoder. Also, spatial information from early layers of
encoder is fused to early layers in decoder. This architec-
ture is shown in Fig. 4(c).

In order to compare the performance of models discussed
in this section, we test our finetuned models on NIST16 [1].
Table 4.2.3 shows the area under the ROC curve (AUC)
for different architectures. From this table, it is clear
that our proposed architecture, LSTM-EnDec-Skip, outper-
forms others. This is due to usage of low-level layer which
is rich in high-resolution features to detect manipulation.
As [5] has mentioned, blurred edges as tampering artifacts
play important role in forgery detection. Therefore, we
combine the high-level semantic details with the low-level
ones to keep spatial resolution and make a better estimation
of manipulated regions.

4.2.4 Qualitative Analysis of Segmentation

We present some qualitative results in Fig. 5 and 6 for a
comparison between LSTM-EnDec [6] and LSTM-EnDec-
Skip (Fig. 2) networks in two-class image manipulation lo-
calization. The images are selected from the NIST’16 [1]
and CASIA 1.0 [20]. It is evident from the figures that our
proposed method outperforms LSTM-EnDec [6] in local-
izing manipulated regions in most cases. More accurate
output masks can ease the problem of recognizing exact
tampering region. NIST’16 [1] is one of the challenging
datasets as it contains three types of manipulation. Among
different types of manipulations, object removal is consid-
ered more complicated to identify as it leaves less distin-
guishable traces. We observe that our approach performs
better than LSTM-EnDec in case of object removal manipu-
lation detection. From Fig. 5, we observe that our approach
performs significantly better in localizing the removal re-
gion. LSTM-EnDec [6] fails to detect the manipulated re-
gion in the third image and predicts some non-manipulated
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Figure 5. Qualitative results for pixel-wise image manipulation de-
tection on NIST’16 [1] dataset. Columns(a) and (b) are input im-
ages and ground-truth masks for manipulated regions. (c) shows
predicted binary mask for LSTM-EnDec [6]. Columns (d) and (e)
demonstrate predicted binary mask and the probability heat map
for our proposed model

regions as tampered. On the contrary, the proposed method
shows reasonable success. We also observe that, LSTM-
EnDec localizes both non-manipulated and manipulated re-
gions in first and fifth images of Fig. 5. However, our ap-
proach shows high recognition performance in these cases.
The seventh example of Fig. 5 shows one of our failure
cases. In this case, the manipulated object has been copied
from original image. Although our method was able to de-
tect partial edges of the manipulated region, it failed to dis-
tinguish between the pristine and fake object.

Fig. 6 shows some qualitative results on CASIA 1.0 [20].
Similar to Fig. 5, we observe that our proposed method per-
forms better than state-of-the-art method LSTM-EnDec [6].
LSTM-EnDec predicts several non-manipulated regions as
manipulated (e.g., case 2,3,4,5). On the other hand, the pro-
posed model localizes manipulated regions with high accu-
racy and only generate false positive predictions for the fifth

(a)                   (b)                     (c)                   (d)                    (e)

Image                  Ground Truth         LSTM-EnDec LSTM-EnDec-Skip        Heat Map       

1
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Figure 6. Qualitative results for pixel-wise image manipulation de-
tection on CASIA 1.0 [20] dataset. Columns (a) and (b) are input
images and ground-truth masks for manipulated regions. Columns
(c) and (d) demonstrate predicted binary mask and the probability
heat map for our proposed model

image. The Fifth image is a very challenging image due to
its complex texture and both LSTM-EnDec [6] and LSTM-
EnDec-Skip (ours) failed to localize the manipulated region
accurately.

5. Conclusion
In this paper, we propose a new approach to further ex-

ploit layers rich in spatial information for localizing manip-
ulation. Detection of blur edges in a manipulated image
helps segment tampered region more accurately and pre-
vents false pristine object segmentation. The fusion of low-
level layers in our framework leads to detection of smooth
edges which is one of the primary traces for tampering de-
tection in an image. Besides, we use resampling features
extracted by Laplacian filter along with Radon transform
and fed to LSTM for learning the transition between manip-
ulated and non-manipulated regions. Consequently, exper-
iments on standard datasets show that our method not only
detects tampering artifacts but also localize different tam-
pered regions with noticeably improved performance com-
pared to previous approaches.
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